Tag Archives: hydraulic excavator pump

China OEM Hydraulic Pump Coupling Assy 0996444 for Excavator Cat 307b 308c spline coupling

Product Description

Hydraulic Pump Coupling Assy 571444 For Excavator Cat 307B 308C

Basic information:


Material Genuine Material
Feature One-stop Shopping Experience
Packaging Details Plastic bag, Carton
Mass Production Booking
Surface Treatment Rust-Proof Oil
Connection Shaft/Spline/Straight
Structure Double-End
Available In stock
Business Type Manufacturer

Product show as below:

 About us:

specialized in:

couplings, rubber mounts, gera parts, hydraulic seals and seal kits for hydraulic hammers, rock breakers, hydraulic excavators,wheel loaders, and JCB badkhoe loaders.


And, Our company also supply:

Engine parts, hydraulic piston pump and hydraulic travel motor, Swing motor assembly and hydraulic component parts, electric parts, etc. Hydraulic hammer breaker parts with piston, cylinder, chisel, through bolt, side bolt, top bush, front head bushing,accumlator, valve, etc.

We always try our best for all our customers and make it better and better. Welcome!



spline coupling

How to identify the most suitable mechanical coupling for a specific application?

Choosing the right mechanical coupling for a specific application requires careful consideration of various factors. Here are the steps to help identify the most suitable coupling:

1. Understand Application Requirements:

Begin by thoroughly understanding the requirements of the application. Consider factors such as torque and speed requirements, misalignment allowances, space constraints, environmental conditions, and any specific industry standards.

2. Evaluate Shaft Misalignment:

Determine the type and amount of misalignment expected between the connected shafts. If significant misalignment is anticipated, flexible couplings may be more appropriate.

3. Consider Torque and Power Transmission:

Calculate the torque and power that the coupling will need to transmit between the shafts. Ensure that the selected coupling can handle the expected load without exceeding its rated capacity.

4. Assess Operating Speed:

Take into account the operating speed of the system. High-speed applications may require couplings designed for high rotational speeds to avoid issues like resonance.

5. Evaluate Environmental Factors:

Consider the environmental conditions in which the coupling will operate. For example, corrosive or harsh environments may require couplings made from specific materials like stainless steel.

6. Review Space Limitations:

Examine the available space for installing the coupling. In some cases, compact couplings may be necessary to fit within confined spaces.

7. Analyze Misalignment Compensation:

For applications where precise alignment is challenging, choose couplings that offer misalignment compensation, such as flexible couplings or universal couplings (Hooke’s joints).

8. Consider Vibration Damping:

If the application involves vibrations or shock loads, consider couplings with vibration damping properties, like certain types of flexible couplings.

9. Account for Maintenance Requirements:

Factor in the maintenance needs of the coupling. Some couplings may require periodic inspections and replacement of components, while others are relatively maintenance-free.

10. Seek Expert Advice:

If unsure about the most suitable coupling for the application, consult with coupling manufacturers or engineering experts who can provide guidance based on their expertise and experience.

By systematically evaluating these factors and requirements, engineers and designers can narrow down the options and select the most appropriate mechanical coupling that will ensure reliable and efficient operation in the specific application.

“`spline coupling

Exploring the use of mechanical couplings in high-power and heavy-duty machinery.

Mechanical couplings play a critical role in high-power and heavy-duty machinery, where reliable power transmission and robust performance are essential. These couplings are designed to withstand substantial torque, accommodate misalignment, and provide durability under demanding operating conditions. Here are some key aspects of using mechanical couplings in such machinery:

1. Power Transmission:

In high-power machinery, such as large industrial pumps, compressors, and turbines, mechanical couplings efficiently transfer significant amounts of torque from the driving source (e.g., motor or engine) to the driven equipment. The coupling’s design and material selection are crucial to ensure efficient power transmission and prevent energy losses.

2. Torque Capacity:

Heavy-duty machinery often generates high torque levels during operation. Mechanical couplings used in these applications are designed to handle these high torque requirements without compromising their structural integrity.

3. Misalignment Compensation:

Heavy-duty machinery may experience misalignment due to thermal expansion, foundation settling, or other factors. Mechanical couplings with flexible elements, like elastomeric or grid couplings, can effectively compensate for misalignment, reducing stress on connected equipment and prolonging the machinery’s life.

4. Shock Load Absorption:

High-power machinery may encounter sudden shock loads during starts, stops, or operational changes. Mechanical couplings with damping or shock-absorbing capabilities, such as elastomeric or disc couplings, help protect the equipment from damage and improve overall system reliability.

5. Heavy-Duty Applications:

Heavy-duty machinery, such as mining equipment, construction machinery, and steel rolling mills, require couplings capable of withstanding harsh conditions and heavy loads. Couplings made from robust materials like steel, cast iron, or alloy steel are commonly used in these applications.

6. High-Temperature Environments:

In certain heavy-duty machinery, like industrial furnaces and kilns, mechanical couplings are exposed to high temperatures. Couplings made from high-temperature alloys or materials with excellent heat resistance are selected for such applications.

7. Precision Machinery:

In precision machinery, such as CNC machines and robotics, couplings with low backlash and high torsional stiffness are preferred to ensure accurate and repeatable motion control.

8. Overload Protection:

Some high-power machinery may experience occasional overloads. Couplings with torque-limiting capabilities, like shear pin or magnetic couplings, can act as overload protection, preventing damage to the machinery during such instances.

Mechanical couplings in high-power and heavy-duty machinery are engineered to meet the specific requirements of each application, delivering reliable performance, safety, and efficiency. The proper selection and installation of couplings play a vital role in ensuring the optimal operation of these critical machines.

“`spline coupling

How do splined couplings work?

Splined couplings work by using interlocking ridges or teeth on the coupling and the connected shafts to transmit torque while allowing some degree of misalignment and axial movement. The operation of splined couplings can be understood in the following steps:

1. Spline Design:

The coupling and the shafts are machined with matching ridges or teeth along their surfaces. These ridges form the spline. There are various spline designs, including involute splines, straight-sided splines, and serrated splines, each with different tooth profiles and configurations.

2. Engagement:

When the splined coupling is fitted onto the shafts, the ridges on the coupling engage with the corresponding grooves on the shafts, creating a secure and positive connection. The engagement can be internal, where the coupling fits inside the shafts, or external, where the coupling fits over the shafts.

3. Torque Transmission:

When torque is applied to one of the shafts, the ridges on the coupling transmit the torque to the other shaft, allowing rotational motion to be transferred between the two shafts.

4. Misalignment Compensation:

Splined couplings can accommodate a small amount of misalignment between the shafts. This misalignment can be angular, where the shafts are not perfectly aligned, or parallel, where the shafts are slightly offset from each other. The splined design allows the coupling to flex slightly, accommodating these misalignments and reducing stress on the shafts and other components.

5. Axial Movement:

Some spline couplings, such as spline shafts, can also allow for limited axial movement. This axial play is useful in applications where thermal expansion or contraction of the shafts may occur, preventing excessive forces on the system.

Splined couplings are commonly used in precision motion control systems, automotive drivetrains, industrial machinery, and other applications where accurate torque transmission and flexibility in alignment are essential. Proper machining and assembly are critical to ensuring precise engagement and reliable operation of splined couplings in various mechanical systems.

China OEM Hydraulic Pump Coupling Assy 0996444 for Excavator Cat 307b 308c   spline couplingChina OEM Hydraulic Pump Coupling Assy 0996444 for Excavator Cat 307b 308c   spline coupling
editor by CX 2023-10-20