China Professional Gicl Type Drum Gear Coupling Customized Shaft Hole Spline Transmission Steel Coupling spline coupling

Product Description

GICL Type Drum Gear Coupling Customized Shaft Hole Spline Transmission Steel Coupling

The GICL drum gear coupling consists of a half coupling with the same number of teeth, an inner ring and an outer flange.The outer teeth are straight teeth and 2 kinds of drum teeth. The tooth is the outer sphere of the tooth.

(1)GIICL allows greater angular displacement (relative to straight tooth coupling), which can improve tooth contact conditions, improve transmission torque capacity and extend service life.The contact state of the angular displacement along the tooth width direction.

(2) compensation capability of radial, axial and angular deviation and axial deviation with compact structure, small turning radius, large bearing capacity, high transmission efficiency, low noise and long maintenance cycle;

(3) applicable to low-speed and high-load conditions, such as metallurgy, mining, lifting and transportation industries, as well as the driving shaft, general machinery and other machinery of the petrochemical industry.

1.Widely used in various mechanical and hydraulic fields 
2.Low-cost maintainance
3.Compensation for axial,radial and angular misalignment
4.Convenient axial plugging assembly
5. Installed horizontally and vertically without using any special tools.
6. Excellent mechanical properties
7. No brittlement at low temperature
8. Good sliding and frictional properties
9. Exellent electrical insulation


Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spline coupling

Exploring the various materials used in manufacturing mechanical couplings.

Mechanical couplings are manufactured using a wide range of materials, each chosen based on specific application requirements. The choice of material impacts the coupling’s performance, durability, and suitability for different operating conditions. Here are some common materials used in manufacturing mechanical couplings:

1. Steel:

Steel is one of the most widely used materials for mechanical couplings due to its strength, durability, and cost-effectiveness. It is suitable for various applications, including high-torque and high-speed requirements. Stainless steel is often preferred for couplings in corrosive environments.

2. Aluminum:

Aluminum is known for its lightweight properties, making it suitable for applications where reducing weight is essential, such as in aerospace and automotive industries. However, aluminum couplings may have lower torque capacities compared to steel couplings.

3. Cast Iron:

Cast iron is used in couplings requiring high strength and wear resistance. It is commonly used in industrial machinery and heavy-duty applications.

4. Bronze:

Bronze is chosen for its excellent resistance to corrosion and its ability to handle high shock loads. Bronze couplings are often used in marine and hydraulics applications.

5. Brass:

Brass is used in couplings where electrical conductivity is required, such as in some electrical motor couplings.

6. Rubber and Elastomers:

Rubber and elastomers are used in flexible couplings to provide flexibility and vibration damping. They can absorb shocks and compensate for misalignments in various applications.

7. Polyurethane:

Polyurethane is commonly used in elastomeric couplings due to its excellent resilience, toughness, and resistance to wear.

8. Thermoplastics:

Thermoplastics like nylon and polyethylene are used in lightweight couplings with low torque requirements. They are known for their low friction and self-lubricating properties.

9. Composite Materials:

Composite materials, such as carbon fiber-reinforced polymers, are used in high-performance couplings where a balance of strength and weight is crucial.

10. Ceramic:

Ceramic couplings are used in extreme temperature and high-speed applications due to their excellent thermal and wear resistance properties.

The choice of material for a mechanical coupling depends on factors like the application’s operating conditions, load requirements, environmental factors, and cost considerations. Selecting the right material ensures that the coupling can perform reliably and efficiently in its intended application.

“`spline coupling

What are the temperature and environmental limits for mechanical couplings?

Mechanical couplings are designed to operate within specific temperature and environmental limits to ensure their performance and longevity. These limits can vary depending on the coupling type, materials, and the specific application. Here are some general considerations regarding temperature and environmental limits for mechanical couplings:

Temperature Limits:

Mechanical couplings are typically rated to handle a specific temperature range. Extreme temperatures can affect the mechanical properties of the coupling’s materials and lead to premature wear or failure.

High-Temperature Applications: In high-temperature environments, couplings made from materials with high-temperature resistance, such as stainless steel or high-temperature alloys, are often used. These couplings can withstand elevated temperatures without experiencing significant degradation.

Low-Temperature Applications: In low-temperature environments, special consideration must be given to the materials’ brittleness and the potential for reduced flexibility. Some couplings may require low-temperature lubricants or preheating to ensure proper operation in cold conditions.

Environmental Limits:

Mechanical couplings can be exposed to various environmental factors that may impact their performance. Manufacturers specify the environmental limits for their couplings, and it is essential to adhere to these guidelines.

Corrosive Environments: In corrosive environments, such as those with exposure to chemicals or saltwater, couplings made from corrosion-resistant materials, like stainless steel or nickel alloys, are preferred. Proper seals and coatings may also be necessary to protect the coupling from corrosion.

High Humidity or Moisture: Excessive humidity or moisture can lead to rust and corrosion, especially in couplings made from ferrous materials. In such environments, using couplings with proper corrosion protection or moisture-resistant coatings is advisable.

Outdoor Exposure: Couplings used in outdoor applications should be designed to withstand exposure to weather elements, such as rain, UV radiation, and temperature fluctuations. Enclosures or protective covers may be necessary to shield the coupling from environmental factors.

Special Applications:

Certain industries, such as food and pharmaceutical, have strict hygiene requirements. In such cases, couplings made from food-grade or hygienic materials are utilized to prevent contamination and meet regulatory standards.

It is crucial to consult the coupling manufacturer’s specifications and guidelines to determine the appropriate temperature and environmental limits for a specific coupling. Adhering to these limits ensures the coupling’s proper operation and longevity in its intended application, reducing the risk of premature wear and failures caused by extreme conditions.

“`spline coupling

Types of mechanical couplings and their specific uses in various industries.

Mechanical couplings come in various types, each designed to meet specific needs in different industries. Here are some common types of mechanical couplings and their specific uses:

1. Flexible Couplings:

Flexible couplings are versatile and widely used in industries such as:

  • Industrial Machinery: Flexible couplings are used in pumps, compressors, fans, and other rotating equipment to transmit torque and absorb vibrations.
  • Automotive: Flexible couplings are used in automotive powertrain systems to connect the engine to the transmission and accommodate engine vibrations.
  • Railway: Flexible couplings are employed in railway systems to connect the diesel engine to the generator or alternator and accommodate dynamic forces during train movement.

2. Rigid Couplings:

Rigid couplings are mainly used in applications that require precise alignment and high torque transmission, such as:

  • Mechanical Drives: Rigid couplings are used in gearboxes, chain drives, and belt drives to connect shafts and maintain accurate alignment.
  • Pumps and Compressors: Rigid couplings are used in heavy-duty pumps and compressors to handle high torque loads.
  • Machine Tools: Rigid couplings are employed in machine tool spindles to ensure precise rotational motion.

3. Gear Couplings:

Gear couplings are suitable for high-torque applications and are commonly found in industries such as:

  • Steel and Metal Processing: Gear couplings are used in rolling mills, steel mills, and metal processing machinery to transmit high torque while accommodating misalignment.
  • Mining: Gear couplings are employed in mining equipment to handle heavy loads and transmit torque in harsh conditions.
  • Crushers and Conveyors: Gear couplings are used in material handling systems to drive crushers, conveyors, and other equipment.

4. Disc Couplings:

Disc couplings are used in various industries due to their high torsional stiffness and ability to handle misalignment. Some applications include:

  • Gas Turbines: Disc couplings are used in gas turbine power generation systems to transmit torque from the turbine to the generator.
  • Petrochemical: Disc couplings are employed in pumps, compressors, and agitators used in the petrochemical industry.
  • Marine: Disc couplings are used in marine propulsion systems to connect the engine to the propeller shaft.

5. Universal Couplings (Hooke’s Joints):

Universal couplings find applications in industries where angular misalignment is common, such as:

  • Aerospace: Universal couplings are used in aircraft control systems to transmit torque between flight control surfaces.
  • Automotive: Universal couplings are employed in steering systems to allow for angular movement of the wheels.
  • Shipbuilding: Universal couplings are used in marine propulsion systems to accommodate misalignment between the engine and propeller shaft.

These examples demonstrate how different types of mechanical couplings are employed across various industries to facilitate torque transmission, accommodate misalignment, and ensure efficient and reliable operation of different mechanical systems.

China Professional Gicl Type Drum Gear Coupling Customized Shaft Hole Spline Transmission Steel Coupling   spline couplingChina Professional Gicl Type Drum Gear Coupling Customized Shaft Hole Spline Transmission Steel Coupling   spline coupling
editor by CX 2024-04-13